Strong ergodicity phenomena for Bernoulli shifts of bounded algebraic dimension

Aristotelis Panagiotopoulos

joint with Assaf Shani

Carnegie Mellon University

April 12, 2022

Given a continuous action $G \curvearrowright X$ of a Polish group G on Polish space X we let E_X^G be the associated **orbit equivalence relation**:

$$xE_X^G x' \iff \exists g \in G \ (g \cdot x = x').$$

Question. Which topological/dynamical properties of G can be recovered from its orbit equivalence relations?

Given a continuous action $G \curvearrowright X$ of a Polish group G on Polish space X we let E_X^G be the associated **orbit equivalence relation**:

$$xE_X^G x' \iff \exists g \in G \ (g \cdot x = x').$$

Question. Which topological/dynamical properties of G can be recovered from its orbit equivalence relations?

Ways to measure the complexity of an orbit equivalence relation $(X, E_X^{\cal G})$:

(1) Its position within the Borel reduction hierarchy.

We say that (X, E) is **Borel reducible** to (Y, F) and we write $E \leq_B F$ if there is a Borel map $f: X \to Y$ with $xEx' \iff f(x)Ff(x')$.

Given a continuous action $G \curvearrowright X$ of a Polish group G on Polish space X we let E_X^G be the associated **orbit equivalence relation**:

$$xE_X^G x' \iff \exists g \in G \ (g \cdot x = x').$$

Question. Which topological/dynamical properties of G can be recovered from its orbit equivalence relations?

Ways to measure the complexity of an orbit equivalence relation $(X, E_X^{\cal G})$:

(1) Its position within the Borel reduction hierarchy.

We say that (X, E) is **Borel reducible** to (Y, F) and we write $E \leq_B F$ if there is a Borel map $f \colon X \to Y$ with $xEx' \iff f(x)Ff(x')$.

(2) Its strong ergodic properties.

We say that (X, E) is **strongly ergodic** with respect to (Y, F) if for every Borel $f: X \to Y$ with $xEx' \Longrightarrow f(x)Ff(x')$ there is a comeager $C \subseteq X$ so that for all $x, x' \in C$ we have that f(x)Ff(x').

Theorem (Solecki)

Let G be a Polish group. Then the following are equivalent:

- ① G is compact;
- $\textbf{ 2 For all } G \curvearrowright X \text{ we have that } E_X^G \text{ is smooth, i.e., } (X,E_X^G) \leq_B (\mathbb{R},=).$

Theorem (Solecki)

Let G be a Polish group. Then the following are equivalent:

- lacksquare G is compact;
- ② For all $G \curvearrowright X$ we have that E_X^G is smooth, i.e., $(X, E_X^G) \leq_B (\mathbb{R}, =)$.

Theorem (Thompson)

Let G be a Polish group. Then the following are equivalent:

- ① G is CLI;
- ② For all $G \curvearrowright X$ we have that E_X^G is classifiable by CLI-actions, i.e., $(X, E_X^G) \leq_B (Y, E_Y^H)$ where $H \curvearrowright Y$ is an action of a CLI group H.

Theorem (Solecki)

Let G be a Polish group. Then the following are equivalent:

- ② For all $G \curvearrowright X$ we have that E_X^G is smooth, i.e., $(X, E_X^G) \leq_B (\mathbb{R}, =)$.

Theorem (Thompson)

Let G be a Polish group. Then the following are equivalent:

- ① G is CLI;
- ② For all $G \curvearrowright X$ we have that E_X^G is classifiable by CLI-actions, i.e., $(X, E_X^G) \leq_B (Y, E_Y^H)$ where $H \curvearrowright Y$ is an action of a CLI group H.

Question (Kechris)

Let G be a Polish group which is **not locally-compact**. Does there exist some action $G \curvearrowright X$ so that (X, E_X^G) is not **essentially countable**?

Let $\mathrm{Sym}(\mathbb{N})$ be the Polish group of all bijections $g\colon \mathbb{N} \to \mathbb{N}$ endowed with the pointwise convergence topology.

A **Polish permutation group** P is any closed subgroup of $\mathrm{Sym}(\mathbb{N})$. Such P comes together with an action $P \curvearrowright \mathbb{N}$ with $(g,n) \mapsto g(n)$.

Let $\mathrm{Sym}(\mathbb{N})$ be the Polish group of all bijections $g\colon \mathbb{N} \to \mathbb{N}$ endowed with the pointwise convergence topology.

A **Polish permutation group** P is any closed subgroup of $\mathrm{Sym}(\mathbb{N})$. Such P comes together with an action $P \curvearrowright \mathbb{N}$ with $(g,n) \mapsto g(n)$.

The **Bernoulli shift** of P is the induced action on $\mathbb{R}^{\mathbb{N}}$:

$$g \cdot (x_n \colon n \in \mathbb{N}) = (x_{g^{-1}(n)} \colon n \in \mathbb{N}).$$

Notation. We denote by E(P) the orbit equivalence relation of $P \curvearrowright \mathbb{R}^{\mathbb{N}}$.

Let $\mathrm{Sym}(\mathbb{N})$ be the Polish group of all bijections $g\colon \mathbb{N} \to \mathbb{N}$ endowed with the pointwise convergence topology.

A **Polish permutation group** P is any closed subgroup of $\mathrm{Sym}(\mathbb{N})$. Such P comes together with an action $P \curvearrowright \mathbb{N}$ with $(g,n) \mapsto g(n)$.

The **Bernoulli shift** of P is the induced action on $\mathbb{R}^{\mathbb{N}}$:

$$g \cdot (x_n \colon n \in \mathbb{N}) = (x_{g^{-1}(n)} \colon n \in \mathbb{N}).$$

Notation. We denote by E(P) the orbit equivalence relation of $P \curvearrowright \mathbb{R}^{\mathbb{N}}$. We denote by $E_{\mathrm{inj}}(P)$ the restriction of E(P) to the P-invariant subset $\mathrm{Inj}(\mathbb{N},\mathbb{R})$ of $\mathbb{R}^{\mathbb{N}}$, consisting of all injective sequences.

Heuristic. $E_{\text{inj}}(P)$ remembers topological/dynamical properties of P.

Let $\mathrm{Sym}(\mathbb{N})$ be the Polish group of all bijections $g\colon \mathbb{N} \to \mathbb{N}$ endowed with the pointwise convergence topology.

A **Polish permutation group** P is any closed subgroup of $\mathrm{Sym}(\mathbb{N})$. Such P comes together with an action $P \curvearrowright \mathbb{N}$ with $(g,n) \mapsto g(n)$.

The **Bernoulli shift** of P is the induced action on $\mathbb{R}^{\mathbb{N}}$:

$$g \cdot (x_n \colon n \in \mathbb{N}) = (x_{g^{-1}(n)} \colon n \in \mathbb{N}).$$

Notation. We denote by E(P) the orbit equivalence relation of $P \curvearrowright \mathbb{R}^{\mathbb{N}}$. We denote by $E_{\mathrm{inj}}(P)$ the restriction of E(P) to the P-invariant subset $\mathrm{Inj}(\mathbb{N},\mathbb{R})$ of $\mathbb{R}^{\mathbb{N}}$, consisting of all injective sequences.

Heuristic. $E_{\rm inj}(P)$ remembers topological/dynamical properties of P.

Theorem (Kechris, Malicki, P., Zielinski)

If P is **not locally compact** then $E_{\rm inj}(P)$ is not essentially countable. Similarly for when P is non-compact or non-CLI.

Let P be a Polish permutation group.

For every $A \subseteq \mathbb{N}$ we have the **pointwise stabilizer**:

$$P_A := \{ g \in P \colon g(a) = a \text{ for all } a \in A \}$$

Let P be a Polish permutation group.

For every $A \subseteq \mathbb{N}$ we have the **pointwise stabilizer**:

$$P_A := \{ g \in P \colon g(a) = a \text{ for all } a \in A \}$$

The **algebraic closure** of A with respect to P is the set $[A]_P \subseteq \mathbb{N}$ with:

$$[A]_P := \{b \in \mathbb{N} : \text{ the orbit } P_A \cdot b \text{ is finite}\}$$

Let P be a Polish permutation group.

For every $A \subseteq \mathbb{N}$ we have the **pointwise stabilizer**:

$$P_A := \{ g \in P \colon g(a) = a \text{ for all } a \in A \}$$

The **algebraic closure** of A with respect to P is the set $[A]_P \subseteq \mathbb{N}$ with:

$$[A]_P := \{b \in \mathbb{N} \colon \text{ the orbit } P_A \cdot b \text{ is finite}\}$$

The assignment $\mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ with $A \mapsto [A]_P$ is a **closure operator**:

- $[[A]_P]_P = [A]_P$

Let P be a Polish permutation group.

For every $A\subseteq \mathbb{N}$ we have the **pointwise stabilizer**:

$$P_A := \{ g \in P \colon g(a) = a \text{ for all } a \in A \}$$

The **algebraic closure** of A with respect to P is the set $[A]_P \subseteq \mathbb{N}$ with:

$$[A]_P := \{b \in \mathbb{N} : \text{ the orbit } P_A \cdot b \text{ is finite}\}$$

The assignment $\mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ with $A \mapsto [A]_P$ is a **closure operator**:

- $([A]_P)_P = [A]_P$

Definition

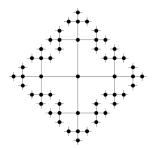
The algebraic dimension $\dim(P)$ of P is the smallest $n \in \mathbb{N}$ so that for all $A \subseteq \mathbb{N}$ with |A| = n + 1, there is $a \in A$ so that $a \in [A \setminus \{a\}]_P$, if such n exists. Otherwise, we write $\dim(P) = \infty$.

Definition

The **algebraic dimension** $\dim(P)$ of P is the smallest $n \in \mathbb{N}$ so that for all $A \subseteq \mathbb{N}$ with |A| = n+1, there is $a \in A$ so that $a \in [A \setminus \{a\}]_P$, where $[A]_P := \{b \in \mathbb{N} \colon \text{ the orbit } P_A \cdot b \text{ is finite}\}$

Examples.

(1) Let T_4 be the infinite 4-regular tree:



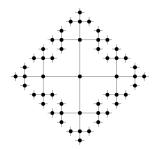
Then $\dim(\operatorname{Aut}(T_4)) = \cdots$

Definition

The **algebraic dimension** $\dim(P)$ of P is the smallest $n \in \mathbb{N}$ so that for all $A \subseteq \mathbb{N}$ with |A| = n+1, there is $a \in A$ so that $a \in [A \setminus \{a\}]_P$, where $[A]_P := \{b \in \mathbb{N} \colon \text{ the orbit } P_A \cdot b \text{ is finite}\}$

Examples.

(1) Let T_4 be the infinite 4-regular tree:



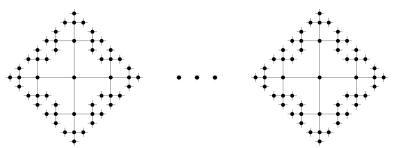
Then $\dim(\operatorname{Aut}(T_4)) = \cdots = 1$

Definition

The **algebraic dimension** $\dim(P)$ of P is the smallest $n \in \mathbb{N}$ so that for all $A \subseteq \mathbb{N}$ with |A| = n + 1, there is $a \in A$ so that $a \in [A \setminus \{a\}]_P$, where $[A]_P := \{b \in \mathbb{N} \colon \text{ the orbit } P_A \cdot b \text{ is finite}\}$

Examples.

(2) Let $n \times T_4$ be the forest consisting of n-many infinite 4-regular trees:



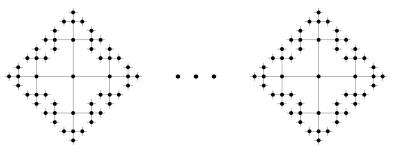
Then
$$\dim(\operatorname{Aut}(n \times T_4)) = \cdots$$

Definition

The **algebraic dimension** $\dim(P)$ of P is the smallest $n \in \mathbb{N}$ so that for all $A \subseteq \mathbb{N}$ with |A| = n+1, there is $a \in A$ so that $a \in [A \setminus \{a\}]_P$, where $[A]_P := \{b \in \mathbb{N} \colon \text{ the orbit } P_A \cdot b \text{ is finite}\}$

Examples.

(2) Let $n \times T_4$ be the forest consisting of n-many infinite 4-regular trees:



Then
$$\dim(\operatorname{Aut}(n \times T_4)) = \cdots = n$$

Definition

The **algebraic dimension** $\dim(P)$ of P is the smallest $n \in \mathbb{N}$ so that for all $A \subseteq \mathbb{N}$ with |A| = n + 1, there is $a \in A$ so that $a \in [A \setminus \{a\}]_P$, where $[A]_P := \{b \in \mathbb{N} \colon \text{ the orbit } P_A \cdot b \text{ is finite}\}$

Examples.

(3) Let \mathbb{Q}^n be the n-dimensional \mathbb{Q} -vector space, then $\dim(\operatorname{Aut}(\mathbb{Q}^n))=n$

Definition

The **algebraic dimension** $\dim(P)$ of P is the smallest $n \in \mathbb{N}$ so that for all $A \subseteq \mathbb{N}$ with |A| = n+1, there is $a \in A$ so that $a \in [A \setminus \{a\}]_P$, where $[A]_P := \{b \in \mathbb{N} \colon \text{ the orbit } P_A \cdot b \text{ is finite}\}$

Examples.

- (3) Let \mathbb{Q}^n be the n-dimensional \mathbb{Q} -vector space, then $\dim(\operatorname{Aut}(\mathbb{Q}^n))=n$
- **Remark**. In examples (1),(2),(3) the permutation group P happens to be locally-compact.

Definition

The **algebraic dimension** $\dim(P)$ of P is the smallest $n \in \mathbb{N}$ so that for all $A \subseteq \mathbb{N}$ with |A| = n+1, there is $a \in A$ so that $a \in [A \setminus \{a\}]_P$, where $[A]_P := \{b \in \mathbb{N} \colon \text{ the orbit } P_A \cdot b \text{ is finite}\}$

Examples.

- (3) Let \mathbb{Q}^n be the n-dimensional \mathbb{Q} -vector space, then $\dim(\operatorname{Aut}(\mathbb{Q}^n))=n$
- **Remark**. In examples (1),(2),(3) the permutation group P happens to be locally-compact.

This is a consequence of the fact that in all these examples the closure operator $A \mapsto [A]_P$ additionally satisfied the **exchange property**: $b \in [A \cup \{a\}]_P \setminus [A]_P \implies a \in [A \cup \{b\}]_P$.

forming this way a pre-geometry.

Definition

The **algebraic dimension** $\dim(P)$ of P is the smallest $n \in \mathbb{N}$ so that for all $A \subseteq \mathbb{N}$ with |A| = n+1, there is $a \in A$ so that $a \in [A \setminus \{a\}]_P$, where $[A]_P := \{b \in \mathbb{N} \colon \text{ the orbit } P_A \cdot b \text{ is finite}\}$

Examples.

- (3) Let \mathbb{Q}^n be the n-dimensional \mathbb{Q} -vector space, then $\dim(\operatorname{Aut}(\mathbb{Q}^n))=n$
- **Remark**. In examples (1),(2),(3) the permutation group P happens to be locally-compact.

This is a consequence of the fact that in all these examples the closure operator $A \mapsto [A]_P$ additionally satisfied the **exchange property**: $b \in [A \cup \{a\}]_P \setminus [A]_P \implies a \in [A \cup \{b\}]_P$,

forming this way a pre-geometry.

There exist **non-locally compact** P with $\dim(P) < \infty$.

Bernoulli shifts and algebraic dimension

Let ${\cal Q}$ be a Polish permutation group. Recall the orbit equivalence relation:

 $E_{\mathrm{inj}}(Q)$, induced on the injective part of the Bernoulli shift $Q \curvearrowright \mathrm{Inj}(\mathbb{N},\mathbb{R})$.

Question. How much does $E_{\text{inj}}(Q)$ remember of $\dim(Q)$?

Bernoulli shifts and algebraic dimension

Let ${\cal Q}$ be a Polish permutation group. Recall the orbit equivalence relation:

 $E_{\mathrm{inj}}(Q)$, induced on the injective part of the Bernoulli shift $Q \curvearrowright \mathrm{Inj}(\mathbb{N},\mathbb{R})$.

Question. How much does $E_{\text{inj}}(Q)$ remember of $\dim(Q)$?

Theorem (P., Shani)

Let P and Q be Polish permutation groups and let $n \in \mathbb{N}$. Assume that:

- \bullet dim(Q) $\leq n$;
- ② P is locally-finite and (n+1)-free.

Then, E(P) is strongly ergodic against $E_{\rm inj}(Q)$. So, $E_{\rm inj}(P) \not\leq_B E_{\rm inj}(Q)$

Bernoulli shifts and algebraic dimension

Let ${\cal Q}$ be a Polish permutation group. Recall the orbit equivalence relation:

 $E_{\mathrm{inj}}(Q)$, induced on the injective part of the Bernoulli shift $Q \curvearrowright \mathrm{Inj}(\mathbb{N},\mathbb{R})$.

Question. How much does $E_{\text{inj}}(Q)$ remember of $\dim(Q)$?

Theorem (P., Shani)

Let P and Q be Polish permutation groups and let $n \in \mathbb{N}$. Assume that:

- \bullet dim(Q) $\leq n$;
- 2 P is locally-finite and (n+1)-free.

Then, E(P) is strongly ergodic against $E_{\rm inj}(Q)$. So, $E_{\rm inj}(P) \not\leq_B E_{\rm inj}(Q)$

- P is **locally-finite** if for all finite $A \subseteq \mathbb{N}$ we have that $[A]_P$ is finite.
- P is (n+1)—free if for all finite $A \subseteq \mathbb{N}$ there are $g_0, g_1, \ldots, g_n \in P$ so that for all $i \leq n$ we have that $[g_i A]_P$ and $[\bigcup_{i:i \neq i} A_j]_P =$ are disjoint.

 $\mathcal{L}_{\mathbf{2}} = \{f_0, f_1, f_2, \ldots\}$ consists of a sequence of **2**-ary function symbols. Let $\mathbb{M}_{\mathbf{2}}$ be the Fraïssé limit of the class $\mathcal{K}_{\mathbf{2}}$ of all finite \mathcal{L} -structures \mathbb{A} s.t.

- ① for all a_0, a_1 in \mathbb{A} and cofinitely many $n \in \mathbb{N}$, $f_n(a_0, a_1) = a_0$.
- ② for all a_0, a_1, a_2 in \mathbb{A} there is $n \in \mathbb{N}$ and $i \in \{0, 1, 2\}$ so that a_i is the image of $\{a_0, a_1, a_2\} \setminus \{a_i\}$ under f_n .

Then $P_2 := Aut(M_2)$ is 2-dimensional, locally-finite, 2-free.

 $\mathcal{L}_{\mathbf{2}} = \{f_0, f_1, f_2, \ldots\}$ consists of a sequence of **2**-ary function symbols. Let $\mathbb{M}_{\mathbf{2}}$ be the Fraïssé limit of the class $\mathcal{K}_{\mathbf{2}}$ of all finite \mathcal{L} -structures \mathbb{A} s.t.

- ① for all a_0, a_1 in \mathbb{A} and cofinitely many $n \in \mathbb{N}$, $f_n(a_0, a_1) = a_0$.
- ② for all a_0, a_1, a_2 in \mathbb{A} there is $n \in \mathbb{N}$ and $i \in \{0, 1, 2\}$ so that a_i is the image of $\{a_0, a_1, a_2\} \setminus \{a_i\}$ under f_n .

Then $P_2 := Aut(M_2)$ is 2-dimensional, locally-finite, 2-free.

Similarly, for every $n \geq 2$ we have \mathcal{L}_n , consisting of n-ary functions, and the corresponding Fraïssé class \mathcal{K}_n whose Fraïssé limit satisfies:

Then $P_n := Aut(\mathbb{M}_n)$ is n-dimensional, locally-finite, n-free.

 $\mathcal{L}_{\mathbf{2}} = \{f_0, f_1, f_2, \ldots\}$ consists of a sequence of **2**-ary function symbols. Let $\mathbb{M}_{\mathbf{2}}$ be the Fraïssé limit of the class $\mathcal{K}_{\mathbf{2}}$ of all finite \mathcal{L} -structures \mathbb{A} s.t.

- ① for all a_0, a_1 in \mathbb{A} and cofinitely many $n \in \mathbb{N}$, $f_n(a_0, a_1) = a_0$.
- ② for all a_0,a_1,a_2 in $\mathbb A$ there is $n\in\mathbb N$ and $i\in\{0,1,2\}$ so that a_i is the image of $\{a_0,a_1,a_2\}\setminus\{a_i\}$ under f_n .

Then $P_2 := Aut(M_2)$ is 2-dimensional, locally-finite, 2-free.

Similarly, for every $n \geq 2$ we have \mathcal{L}_n , consisting of n-ary functions, and the corresponding Fraïssé class \mathcal{K}_n whose Fraïssé limit satisfies:

Then $P_n := Aut(\mathbb{M}_n)$ is n-dimensional, locally-finite, n-free.

Theorem. (Kruckman, P.) If $m \neq n$, then $E_{\rm inj}(P_{\boldsymbol m})$) and $E_{\rm inj}(P_{\boldsymbol n})$) are incomparable under *-reductions.

 $\mathcal{L}_2 = \{f_0, f_1, f_2, \ldots\}$ consists of a sequence of **2**-ary function symbols. Let \mathbb{M}_2 be the Fraïssé limit of the class \mathcal{K}_2 of all finite \mathcal{L} -structures \mathbb{A} s.t.

- ① for all a_0, a_1 in \mathbb{A} and cofinitely many $n \in \mathbb{N}$, $f_n(a_0, a_1) = a_0$.
- ② for all a_0, a_1, a_2 in \mathbb{A} there is $n \in \mathbb{N}$ and $i \in \{0, 1, 2\}$ so that a_i is the image of $\{a_0, a_1, a_2\} \setminus \{a_i\}$ under f_n .

Then $P_2 := Aut(M_2)$ is 2-dimensional, locally-finite, 2-free.

Similarly, for every $n \geq 2$ we have \mathcal{L}_n , consisting of n-ary functions, and the corresponding Fraïssé class \mathcal{K}_n whose Fraïssé limit satisfies:

Then $P_n := Aut(\mathbb{M}_n)$ is n-dimensional, locally-finite, n-free.

Theorem. (Kruckman, P.) If $m \neq n$, then $E_{\rm inj}(P_{m})$) and $E_{\rm inj}(P_{n})$) are incomparable under *-reductions.

Corollary. (P., Shani) If $m \le n$, then $E(P_n)$ is strongly ergodic w.r.t. $E_{\rm inj}(P_m)$). In particular, we have that:

$$E_{\text{inj}}(P_2)) \leq_B E_{\text{inj}}(P_3) \leq_B E_{\text{inj}}(P_4) \leq_B \cdots$$

Let (X,E) be an equivalence relation, $\mathbb P$ be a poset, and τ be a $\mathbb P$ -name.

Let (X,E) be an equivalence relation, $\mathbb P$ be a poset, and τ be a $\mathbb P$ -name.

ullet (\mathbb{P}, au) is an E-pin, if $\mathbb{P} \times \mathbb{P}$ forces that $au_l E au_r$.

Let (X,E) be an equivalence relation, $\mathbb P$ be a poset, and τ be a $\mathbb P$ -name.

- (\mathbb{P}, τ) is an E-pin, if $\mathbb{P} \times \mathbb{P}$ forces that $\tau_l E \tau_r$.
- An E-pin (\mathbb{P}, τ) is trivial if there is $x \in X$ so that $\mathbb{P} \Vdash \check{x}E\tau$

Let (X,E) be an equivalence relation, $\mathbb P$ be a poset, and τ be a $\mathbb P$ -name.

- (\mathbb{P}, τ) is an E-pin, if $\mathbb{P} \times \mathbb{P}$ forces that $\tau_l E \tau_r$.
- An E-pin (\mathbb{P}, τ) is trivial if there is $x \in X$ so that $\mathbb{P} \Vdash \check{x}E\tau$
- ullet E is **pinned** if all E-pins are trivial.

Let (X, E) be an equivalence relation, $\mathbb P$ be a poset, and τ be a $\mathbb P$ -name.

- (\mathbb{P}, τ) is an E-pin, if $\mathbb{P} \times \mathbb{P}$ forces that $\tau_l E \tau_r$.
- An E-pin (\mathbb{P}, τ) is trivial if there is $x \in X$ so that $\mathbb{P} \Vdash \check{x}E\tau$
- \bullet E is **pinned** if all E-pins are trivial.

Example. Let $E_{\rm inj}({\rm Sym}(\mathbb{N}))$ be the injective part of ${\rm Sym}(\mathbb{N}) \curvearrowright \mathbb{R}^{\mathbb{N}}$: $(x_n \colon n \in \mathbb{N}) E_{\rm inj}({\rm Sym}(\mathbb{N}))(y_n \colon n \in \mathbb{N}) \iff \{x_n \colon n \in \mathbb{N}\} = \{y_n \colon n \in \mathbb{N}\}$

Let (X,E) be an equivalence relation, $\mathbb P$ be a poset, and τ be a $\mathbb P$ -name.

- (\mathbb{P}, τ) is an E-pin, if $\mathbb{P} \times \mathbb{P}$ forces that $\tau_l E \tau_r$.
- An E-pin (\mathbb{P}, τ) is trivial if there is $x \in X$ so that $\mathbb{P} \Vdash \check{x}E\tau$
- \bullet E is **pinned** if all E-pins are trivial.

Example. Let $E_{\rm inj}({\rm Sym}(\mathbb{N}))$ be the injective part of ${\rm Sym}(\mathbb{N}) \curvearrowright \mathbb{R}^{\mathbb{N}}$: $(x_n \colon n \in \mathbb{N}) E_{\rm inj}({\rm Sym}(\mathbb{N}))(y_n \colon n \in \mathbb{N}) \iff \{x_n \colon n \in \mathbb{N}\} = \{y_n \colon n \in \mathbb{N}\}$ Then $E_{\rm inj}({\rm Sym}(\mathbb{N}))$ is **unpinned**! Take $\mathbb{P} := {\rm Coll}(\mathbb{N}, \mathbb{R})$.

Let (X,E) be an equivalence relation, $\mathbb P$ be a poset, and τ be a $\mathbb P$ -name.

- (\mathbb{P}, τ) is an E-pin, if $\mathbb{P} \times \mathbb{P}$ forces that $\tau_l E \tau_r$.
- An E-pin (\mathbb{P}, τ) is trivial if there is $x \in X$ so that $\mathbb{P} \Vdash \check{x}E\tau$
- \bullet E is **pinned** if all E-pins are trivial.

Example. Let $E_{\rm inj}({\rm Sym}(\mathbb N))$ be the injective part of ${\rm Sym}(\mathbb N) \curvearrowright \mathbb R^{\mathbb N}$: $(x_n\colon n\in\mathbb N)E_{\rm inj}({\rm Sym}(\mathbb N))(y_n\colon n\in\mathbb N) \iff \{x_n\colon n\in\mathbb N\}=\{y_n\colon n\in\mathbb N\}$ Then $E_{\rm inj}({\rm Sym}(\mathbb N))$ is **unpinned**! Take $\mathbb P:={\rm Coll}(\mathbb N,\mathbb R)$.

Question. (Kechris) Is $E_{\text{ini}}(\text{Sym}(\mathbb{N}))$ the \leq_B -least unpinned E.R. ?

Let (X,E) be an equivalence relation, $\mathbb P$ be a poset, and τ be a $\mathbb P$ -name.

- ullet (\mathbb{P}, τ) is an E-pin, if $\mathbb{P} \times \mathbb{P}$ forces that $\tau_l E \tau_r$.
- ullet An E-pin (\mathbb{P}, τ) is trivial if there is $x \in X$ so that $\mathbb{P} \Vdash \check{x}E\tau$
- \bullet E is **pinned** if all E-pins are trivial.

Example. Let $E_{\rm inj}({\rm Sym}(\mathbb N))$ be the injective part of ${\rm Sym}(\mathbb N) \curvearrowright \mathbb R^{\mathbb N}$: $(x_n\colon n\in\mathbb N)E_{\rm inj}({\rm Sym}(\mathbb N))(y_n\colon n\in\mathbb N) \iff \{x_n\colon n\in\mathbb N\}=\{y_n\colon n\in\mathbb N\}$ Then $E_{\rm inj}({\rm Sym}(\mathbb N))$ is **unpinned**! Take $\mathbb P:={\rm Coll}(\mathbb N,\mathbb R)$.

Question. (Kechris) Is $E_{\rm inj}({\rm Sym}(\mathbb N))$ the \leq_B -least unpinned E.R. ? (Zapletal) Exhibited unpinned: $F_1 \lneq_B F_2 \lneq_B \overset{\aleph_1}{\longleftrightarrow} \qquad \lneq_B E_{\rm inj}({\rm Sym}(\mathbb N))$

The proof uses the theory of pinned cardinality.

Let (X,E) be an equivalence relation, $\mathbb P$ be a poset, and τ be a $\mathbb P$ -name.

- ullet (\mathbb{P}, τ) is an E-pin, if $\mathbb{P} \times \mathbb{P}$ forces that $\tau_l E \tau_r$.
- An E-pin (\mathbb{P}, τ) is trivial if there is $x \in X$ so that $\mathbb{P} \Vdash \check{x}E\tau$
- \bullet E is **pinned** if all E-pins are trivial.

Example. Let $E_{\rm inj}({\rm Sym}(\mathbb N))$ be the injective part of ${\rm Sym}(\mathbb N) \curvearrowright \mathbb R^{\mathbb N}$: $(x_n\colon n\in\mathbb N)E_{\rm inj}({\rm Sym}(\mathbb N))(y_n\colon n\in\mathbb N) \iff \{x_n\colon n\in\mathbb N\}=\{y_n\colon n\in\mathbb N\}$ Then $E_{\rm inj}({\rm Sym}(\mathbb N))$ is **unpinned**! Take $\mathbb P:={\rm Coll}(\mathbb N,\mathbb R)$.

Question. (Kechris) Is $E_{\rm inj}({\rm Sym}(\mathbb{N}))$ the \leq_B -least unpinned E.R. ?

(Zapletal) Exhibited unpinned: $F_1 \leq_B F_2 \leq_B \cdots \leq_B E_{\rm inj}({\rm Sym}(\mathbb{N}))$ The proof uses the theory of pinned cardinality.

The minimum of the above sequence and the minimum of our sequence: $E_{\text{ini}}(P_2) \leq_B E_{\text{ini}}(P_3) \leq_B E_{\text{ini}}(P_4) \leq_B \cdots$ have pinned cardinality \aleph_1 .

Let (X,E) be an equivalence relation, $\mathbb P$ be a poset, and τ be a $\mathbb P$ -name.

- ullet (\mathbb{P}, τ) is an E-pin, if $\mathbb{P} \times \mathbb{P}$ forces that $\tau_l E \tau_r$.
- An E-pin (\mathbb{P}, τ) is trivial if there is $x \in X$ so that $\mathbb{P} \Vdash \check{x}E\tau$
- \bullet E is **pinned** if all E-pins are trivial.

Example. Let $E_{\rm inj}({\rm Sym}(\mathbb N))$ be the injective part of ${\rm Sym}(\mathbb N) \curvearrowright \mathbb R^{\mathbb N}$: $(x_n\colon n\in\mathbb N)E_{\rm inj}({\rm Sym}(\mathbb N))(y_n\colon n\in\mathbb N) \iff \{x_n\colon n\in\mathbb N\}=\{y_n\colon n\in\mathbb N\}$ Then $E_{\rm inj}({\rm Sym}(\mathbb N))$ is **unpinned**! Take $\mathbb P:={\rm Coll}(\mathbb N,\mathbb R)$.

Question. (Kechris) Is $E_{\rm inj}({\rm Sym}(\mathbb{N}))$ the \leq_B -least unpinned E.R. ?

(Zapletal) Exhibited unpinned: $F_1 \leq_B F_2 \leq_B \stackrel{\aleph_1}{\cdots} \leq_B E_{\rm inj}(\operatorname{Sym}(\mathbb{N}))$ The proof uses the theory of pinned cardinality.

The minimum of the above sequence and the minimum of our sequence:

 $E_{\rm inj}(P_{\mathbf{2}})) \lneq_B E_{\rm inj}(P_{\mathbf{3}})) \lneq_B E_{\rm inj}(P_{\mathbf{4}})) \lneq_B \cdots$ have pinned cardinality \aleph_1 .

Corollary. (P., Shani) $E_{\text{inj}}(P_2)$) $\leq_B F_1$.

Let (X,E) be an equivalence relation, $\mathbb P$ be a poset, and τ be a $\mathbb P$ -name.

- (\mathbb{P}, τ) is an E-pin, if $\mathbb{P} \times \mathbb{P}$ forces that $\tau_l E \tau_r$.
- An E-pin (\mathbb{P}, τ) is trivial if there is $x \in X$ so that $\mathbb{P} \Vdash \check{x}E\tau$
- \bullet E is **pinned** if all E-pins are trivial.

Example. Let $E_{\rm inj}({\rm Sym}(\mathbb N))$ be the injective part of ${\rm Sym}(\mathbb N) \curvearrowright \mathbb R^{\mathbb N}$: $(x_n\colon n\in\mathbb N)E_{\rm inj}({\rm Sym}(\mathbb N))(y_n\colon n\in\mathbb N) \iff \{x_n\colon n\in\mathbb N\}=\{y_n\colon n\in\mathbb N\}$ Then $E_{\rm inj}({\rm Sym}(\mathbb N))$ is **unpinned**! Take $\mathbb P:={\rm Coll}(\mathbb N,\mathbb R)$.

Question. (Kechris) Is $E_{\text{inj}}(\operatorname{Sym}(\mathbb{N}))$ the \leq_B -least unpinned E.R. ?

(Zapletal) Exhibited unpinned: $F_1 \leq_B F_2 \leq_B \cdots \leq_B E_{\rm inj}({\rm Sym}(\mathbb{N}))$ The proof uses the theory of pinned cardinality.

The minimum of the above sequence and the minimum of our sequence: $E_{\text{ini}}(P_2) \leq_B E_{\text{ini}}(P_3) \leq_B E_{\text{ini}}(P_4) \leq_B \cdots$ have pinned cardinality \aleph_1 .

Corollary. (P., Shani) $E_{\text{inj}}(P_2)$) $\leq_B F_1$.

Question. What about the converse? Is there a nice basis for the class of unpinned equivalence relations under Borel reductions?

Table of Contents

1 Some words on the proof

Main theorem

Theorem (P., Shani)

Let P and Q be Polish permutation groups and let $n \in \mathbb{N}$. Assume that:

- \bullet dim(Q) $\leq n$;
- ② P is locally-finite and (n+1)-free.

Then, E(P) is strongly ergodic against $E_{\rm inj}(Q)$. Hence, $E(P) \not\leq_B E_{\rm inj}(Q)$

Main theorem

Theorem (P., Shani)

Let P and Q be Polish permutation groups and let $n \in \mathbb{N}$. Assume that:

- \bullet dim $(Q) \leq n$;
- 2 P is locally-finite and (n+1)-free.

Then, E(P) is strongly ergodic against $E_{\rm inj}(Q)$. Hence, $E(P) \not\leq_B E_{\rm inj}(Q)$

The proof employs/builds on symmetric model techniques.

Recall Cohen's proof that $ZF + \neg AC$ is consistent.

Recall Cohen's proof that $ZF + \neg AC$ is consistent.

Let $\ensuremath{\mathbb{P}}$ be the forcing which adds a countable sequence of Cohen reals:

$$(x_n^G \colon n \in \mathbb{N})$$

Recall Cohen's proof that $ZF + \neg AC$ is consistent.

Let $\mathbb P$ be the forcing which adds a countable sequence of Cohen reals:

$$(x_n^G \colon n \in \mathbb{N})$$

Between V and V[G] there is the intermediate "symmetric model":

$$V(\{x_n^G \colon n \in \mathbb{N}\})$$

This can be defined in a number of equivalent ways:

- ullet it consists of the realization of all **symmetric** names $(\operatorname{Sym}(\mathbb{N}) \curvearrowright \mathbb{P})$;
- \bullet it is the smallest ZF-extension of V in V[G] containing $\{x_n^G\colon n\in\mathbb{N}\}.$

Recall Cohen's proof that $ZF + \neg AC$ is consistent.

Let $\mathbb P$ be the forcing which adds a countable sequence of Cohen reals:

$$(x_n^G \colon n \in \mathbb{N})$$

Between V and V[G] there is the intermediate "symmetric model":

$$V(\{x_n^G\colon n\in\mathbb{N}\})$$

This can be defined in a number of equivalent ways:

- ullet it consists of the realization of all **symmetric** names $(\operatorname{Sym}(\mathbb{N}) \curvearrowright \mathbb{P})$;
- it is the smallest ZF-extension of V in V[G] containing $\{x_n^G\colon n\in\mathbb{N}\}.$

Theorem. (Cohen) In $V(\{x_n^G\})$ there is no injection $\mathbb{N} \to \{x_n^G \colon n \in \mathbb{N}\}$

Recall Cohen's proof that $ZF + \neg AC$ is consistent.

Let $\mathbb P$ be the forcing which adds a countable sequence of Cohen reals:

$$(x_n^G \colon n \in \mathbb{N})$$

Between V and V[G] there is the intermediate "symmetric model":

$$V(\{x_n^G\colon n\in\mathbb{N}\})$$

This can be defined in a number of equivalent ways:

- it consists of the realization of all **symmetric** names $(\operatorname{Sym}(\mathbb{N}) \curvearrowright \mathbb{P})$;
- ullet it is the smallest ZF-extension of V in V[G] containing $\{x_n^G\colon n\in\mathbb{N}\}.$

Theorem. (Cohen) In $V(\{x_n^G\})$ there is no injection $\mathbb{N} \to \{x_n^G \colon n \in \mathbb{N}\}$

Lemma. (Existence of supports) For any $S \in V(\{x_n^G\})$ with $S \subseteq V$ there is a finite $F \subseteq \{x_n^G \colon n \in \mathbb{N}\}$ so that $S \in V[F]$.

In the basic Cohen model the action $\mathrm{Sym}(\mathbb{N}) \curvearrowright \mathbb{P}$ gave:

$$(x_n^G \colon n \in \mathbb{N}) \mapsto \{x_n^G \colon n \in \mathbb{N}\}$$

In the basic Cohen model the action $\mathrm{Sym}(\mathbb{N}) \curvearrowright \mathbb{P}$ gave:

$$(x_n^G \colon n \in \mathbb{N}) \mapsto \{x_n^G \colon n \in \mathbb{N}\}$$

If P is a Polish permutation group, then the Bernoulli shift action $P \curvearrowright \mathbb{R}^{\mathbb{N}}$ is essentially $P \curvearrowright \mathbb{P}$, and the generic $(x_n^G \colon n \in \mathbb{N})$ is injective.

In the basic Cohen model the action $\mathrm{Sym}(\mathbb{N}) \curvearrowright \mathbb{P}$ gave:

$$(x_n^G \colon n \in \mathbb{N}) \mapsto \{x_n^G \colon n \in \mathbb{N}\}$$

If P is a Polish permutation group, then the Bernoulli shift action $P \curvearrowright \mathbb{R}^{\mathbb{N}}$ is essentially $P \curvearrowright \mathbb{P}$, and the generic $(x_n^G \colon n \in \mathbb{N})$ is injective. But $P = \operatorname{Aut}(\mathcal{N})$ for some countable structure \mathcal{N} on \mathbb{N} . We have

$$(x_n^G \colon n \in \mathbb{N}) \mapsto \mathcal{N}^G$$

where \mathcal{N}^G is the structure \mathcal{N} copied on $\{x_n^G \colon n \in \mathbb{N}\}.$

In the basic Cohen model the action $\mathrm{Sym}(\mathbb{N}) \curvearrowright \mathbb{P}$ gave:

$$(x_n^G \colon n \in \mathbb{N}) \mapsto \{x_n^G \colon n \in \mathbb{N}\}\$$

If P is a Polish permutation group, then the Bernoulli shift action $P \curvearrowright \mathbb{R}^{\mathbb{N}}$ is essentially $P \curvearrowright \mathbb{P}$, and the generic $(x_n^G \colon n \in \mathbb{N})$ is injective. But $P = \operatorname{Aut}(\mathcal{N})$ for some countable structure \mathcal{N} on \mathbb{N} . We have

$$(x_n^G \colon n \in \mathbb{N}) \mapsto \mathcal{N}^G$$

where \mathcal{N}^G is the structure \mathcal{N} copied on $\{x_n^G \colon n \in \mathbb{N}\}.$

We have the intermediate symmetric model $V \subseteq V(\mathcal{N}^G) \subseteq V[G]$:

- it consists of the realization of all **symmetric** names $(P \curvearrowright \mathbb{P})$;
- ullet it is the smallest ZF-extension of V in V[G] containing \mathcal{N}^G .

In the basic Cohen model the action $\mathrm{Sym}(\mathbb{N}) \curvearrowright \mathbb{P}$ gave:

$$(x_n^G \colon n \in \mathbb{N}) \mapsto \{x_n^G \colon n \in \mathbb{N}\}$$

If P is a Polish permutation group, then the Bernoulli shift action $P \curvearrowright \mathbb{R}^{\mathbb{N}}$ is essentially $P \curvearrowright \mathbb{P}$, and the generic $(x_n^G \colon n \in \mathbb{N})$ is injective. But $P = \operatorname{Aut}(\mathcal{N})$ for some countable structure \mathcal{N} on \mathbb{N} . We have

$$(x_n^G \colon n \in \mathbb{N}) \mapsto \mathcal{N}^G$$

where \mathcal{N}^G is the structure \mathcal{N} copied on $\{x_n^G\colon n\in\mathbb{N}\}.$

We have the intermediate symmetric model $V \subseteq V(\mathcal{N}^G) \subseteq V[G]$:

- it consists of the realization of all **symmetric** names $(P \curvearrowright \mathbb{P})$;
- ullet it is the smallest ZF-extension of V in V[G] containing \mathcal{N}^G .

Lemma ((P., Shani) Existence of supports)

If P is a locally-finite Polish permutation group, then for all $S \in V(\mathcal{N}^G)$ with $S \subseteq V$ there is a finite $F \subseteq \{x_n^G \colon n \in \mathbb{N}\}$ so that $S \in V[F]$.

To conclude:

Theorem (Shani)

Suppose E and F are Borel equivalence relations on X and Y respectively and $x \mapsto \mathcal{N}^x$ and $y \mapsto \mathcal{M}^y$ be classifications by countable structures of E and F respectively. Then, the following are equivalent.

- ① For every Borel homomorphism $f:(X_0,E)\to (Y,F)$, where $X_0\subseteq X$ is non-meager, f maps a non-meager set into a single F-class;
- ② If $x \in X$ is Cohen-generic over V and \mathcal{M}^y is a potential F-invariant in $V(\mathcal{N}^x)$, definable from \mathcal{N}^x and parameters in V, then $B \in V$.

To conclude:

Theorem (Shani)

Suppose E and F are Borel equivalence relations on X and Y respectively and $x \mapsto \mathcal{N}^x$ and $y \mapsto \mathcal{M}^y$ be classifications by countable structures of E and F respectively. Then, the following are equivalent.

- ① For every Borel homomorphism $f:(X_0,E)\to (Y,F)$, where $X_0\subseteq X$ is non-meager, f maps a non-meager set into a single F-class;
- ② If $x \in X$ is Cohen-generic over V and \mathcal{M}^y is a potential F-invariant in $V(\mathcal{N}^x)$, definable from \mathcal{N}^x and parameters in V, then $B \in V$.

In the case of the Bernoulli shifts, we have that $P=\operatorname{Aut}(\mathcal{N})$ and $Q=\operatorname{Aut}(\mathcal{M})$ for countable structures \mathcal{M} and \mathcal{N} . So we have that:

$$P \curvearrowright \operatorname{Inj}(\mathbb{N}, \mathbb{R})$$
 is classified by $(x_n \colon n \in \mathbb{N}) \mapsto \mathcal{N}$ on $\{x_n \colon n \in \mathbb{N}\}$

$$Q \curvearrowright \operatorname{Inj}(\mathbb{N}, \mathbb{R})$$
 is classified by $(y_n \colon n \in \mathbb{N}) \mapsto \mathcal{M}$ on $\{y_n \colon n \in \mathbb{N}\}$

$\mathsf{Th}\alpha\mathsf{nk}\;\mathsf{you}!$